CULLIN-3 Controls TIMELESS Oscillations in the Drosophila Circadian Clock
نویسندگان
چکیده
Eukaryotic circadian clocks rely on transcriptional feedback loops. In Drosophila, the PERIOD (PER) and TIMELESS (TIM) proteins accumulate during the night, inhibit the activity of the CLOCK (CLK)/CYCLE (CYC) transcriptional complex, and are degraded in the early morning. The control of PER and TIM oscillations largely depends on post-translational mechanisms. They involve both light-dependent and light-independent pathways that rely on the phosphorylation, ubiquitination, and proteasomal degradation of the clock proteins. SLMB, which is part of a CULLIN-1-based E3 ubiquitin ligase complex, is required for the circadian degradation of phosphorylated PER. We show here that CULLIN-3 (CUL-3) is required for the circadian control of PER and TIM oscillations. Expression of either Cul-3 RNAi or dominant negative forms of CUL-3 in the clock neurons alters locomotor behavior and dampens PER and TIM oscillations in light-dark cycles. In constant conditions, CUL-3 deregulation induces behavioral arrhythmicity and rapidly abolishes TIM cycling, with slower effects on PER. CUL-3 affects TIM accumulation more strongly in the absence of PER and forms protein complexes with hypo-phosphorylated TIM. In contrast, SLMB affects TIM more strongly in the presence of PER and preferentially associates with phosphorylated TIM. CUL-3 and SLMB show additive effects on TIM and PER, suggesting different roles for the two ubiquitination complexes on PER and TIM cycling. This work thus shows that CUL-3 is a new component of the Drosophila clock, which plays an important role in the control of TIM oscillations.
منابع مشابه
A mathematical model of the Drosophila circadian clock with emphasis on posttranslational mechanisms.
Experimental evidence points increasingly to the importance of posttranslational processes such as phosphorylation and translocation in the molecular circadian clocks of many organisms. We develop a mathematical model of the Drosophila circadian clock that incorporates the emerging details of the timing of nuclear translocation of the PERIOD and TIMELESS proteins. Most models assume that these ...
متن کاملThe E3 ubiquitin ligase CTRIP controls CLOCK levels and PERIOD oscillations in Drosophila.
In the Drosophila circadian clock, the CLOCK/CYCLE complex activates the period and timeless genes that negatively feedback on CLOCK/CYCLE activity. The 24-h pace of this cycle depends on the stability of the clock proteins. RING-domain E3 ubiquitin ligases have been shown to destabilize PERIOD or TIMELESS. Here we identify a clock function for the circadian trip (ctrip) gene, which encodes a H...
متن کاملCycling vrille Expression Is Required for a Functional Drosophila Clock
We identified a novel regulatory loop within Drosophila's circadian clock. A screen for clock-controlled genes recovered vrille (vri), a transcription factor essential for embryonic development. vri is expressed in circadian pacemaker cells in larval and adult brains. vri RNA levels oscillate with a circadian rhythm. Cycling is directly regulated by the transcription factors dCLOCK and CYCLE, w...
متن کاملIdentification and characterization of circadian clock genes in the pea aphid Acyrthosiphon pisum.
The molecular basis of circadian clocks is highly evolutionarily conserved and has been best characterized in Drosophila and mouse. Analysis of the Acyrthosiphon pisum genome revealed the presence of orthologs of the following genes constituting the core of the circadian clock in Drosophila: period (per), timeless (tim), Clock, cycle, vrille, and Pdp1. However, the presence in A. pisum of ortho...
متن کاملTIMELESS-dependent positive and negative autoregulation in the Drosophila circadian clock.
The timeless protein (TIM) is a central component of the circadian pacemaker machinery of the fruitfly Drosophila melanogaster. Both TIM and its partner protein, the period protein PER, show robust circadian oscillations in mRNA and protein levels. Yet the role of TIM in the rhythm generation mechanism is largely unknown. To analyze TIM function, we constructed transgenic flies that carry a hea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2012